Предельные теоремы - definitie. Wat is Предельные теоремы
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Предельные теоремы - definitie

УТВЕРЖДЕНИЕ, ДЛЯ КОТОРОГО СУЩЕСТВУЕТ ДОКАЗАТЕЛЬСТВО (ОБЫЧНО В МАТЕМАТИКЕ)
Теоремы
  • теореме о четырёх цветах]], такие раскраски возможны для любой плоской карты, но каждое известное доказательство включает в себя вычислительную часть, слишком объёмную, чтобы быть выполненной без использования компьютера.
  • Коллатца]] : один из способов проиллюстрировать её сложность — расширить итерацию от натуральных чисел до комплексных чисел. Результатом является [[фрактал]], который (в соответствии с универсальностью) напоминает [[множество Мандельброта]] .
  • accessdate=2010-09-26}}</ref>

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ      
теории вероятностей , название ряда теорем вероятностей теории, указывающих условия возникновения тех или иных закономерностей в результате действия большого числа случайных факторов. Простейшие из предельных теорем - Бернулли теорема, Лапласа теорема. См. также Больших чисел закон, Ляпунова теорема.
Предельные теоремы      

теории вероятностей, общее название ряда теорем вероятностей теории (См. Вероятностей теория), указывающих условия возникновения тех или иных закономерностей в результате действия большого числа случайных факторов. Исторически первые П. т. - теорема Бернулли (1713) и теорема Лапласа (1812) - относятся к распределению отклонений частоты появления некоторого события Е при n независимых испытаниях от его вероятности р (0 < р < 1). Частотой называется отношение m/n, где m - число наступлений события Е при n испытаниях (точные формулировки см. в ст. Бернулли теорема и Лапласа теорема). С. Пуассон (1837) распространил эти теоремы на случай, когда вероятность pk наступления Е в k-м испытании может зависеть от k, описав предельное поведение при n → ∞ распределения отклонений частоты m/n от среднего арифметического вероятностей pk (1 ≤ kn):

(см. Больших чисел закон). Если обозначить через Xk случайную величину, принимающую значение, равное единице при появлении события Е в k-м испытании, и значение, равное нулю при его непоявлении, то m можно представить в виде суммы

m = X1 + X2 +... + Xn,

что позволяет рассматривать перечисленные теоремы как частные случаи общих П. т., относящихся к суммам независимых случайных величин (закона больших чисел и центральной предельной теоремы).

Закон больших чисел. Пусть

X1, X2,..., Xn,... (*)

- какая-либо последовательность независимых случайных величин, sn - сумма первых n из них

sn = X1 + X2 +... + Xn,

An и B2n - соответственно Математическое ожидание

An= Е sn = Е X1 + E X2 +... + EXn,

B2n= D sn -= D X1 +D X2 +... + DXn,

суммы sn. Говорят, что последовательность (*) подчиняется закону больших чисел, если при любом ε > 0 вероятность неравенства

стремится к нулю при n → ∞.

Широкие условия приложимости закона больших чисел найдены впервые П. Л. Чебышевым (в 1867) (см. Больших чисел закон). Эти условия затем были обобщены А. А. Марковым (старшим). Вопрос о необходимых и достаточных условиях приложимости закона больших чисел был окончательно решен А. Н. Колмогоровым (1928). В случае, когда величины Xn имеют одну и ту же функцию распределения, эти условия, как показал А. Я. Хинчин (1929), сводятся к одному: величины Xn должны иметь конечные математические ожидания.

Центральная предельная теорема. Говорят, что к последовательности (*) применима центральная предельная теорема, если при любых z1 и z2 вероятность неравенства

z1Bn < sn - An < z2Bn

имеет пределом при n → ∞ - величину

(см. Нормальное распределение). Довольно общие достаточные условия применимости центральной предельной теоремы были указаны Чебышевым (1887), но и в его доказательстве обнаружились пробелы, восполненные лишь позже Марковым (1898). Решение вопроса, близкое к окончательному, было получено А. М. Ляпуновым (1901). Точная формулировка теоремы Ляпунова такова: пусть

ck = E|Xk - ЕХк|2+δ, δ > 0

Cn = c1 + c2 +... + cn.

Если отношение стремится к нулю при n → ∞, то к последовательности (*) применима центральная предельная теорема. Окончательное решение вопроса об условиях приложимости центральной предельной теоремы получено в основных чертах С. Н. Бернштейном (1926) и дополнено В. Феллером (1935).

Из др. направлений работ в области П. т. можно отметить следующие.

1) Начатые Марковым и продолженные Бернштейном и др. исследования условий приложимости закона больших чисел и центральной предельной теоремы к суммам зависимых величин.

2) Даже в случае последовательности одинаково распределённых случайных величин можно указать простые примеры, когда суммы имеют в пределе распределение, отличное от нормального (речь идёт о невырожденных распределениях, т. е. о распределениях, не сосредоточенных целиком в одной точке). В работах советских математиков А. Я. Хинчина, Б. В. Гнеденко, французских математиков П. Леви, В. Дёблина и др. полностью изучены как класс возможных предельных распределении для сумм независимых случайных величин, так и условия сходимости распределений сумм к тому или иному предельному распределению.

3) Значительное внимание уделяется т. н. локальным П. т. Пусть, например, величины Xn принимают лишь целые значения. Тогда суммы sn принимают также только целые значения и естественно поставить вопрос о предельном поведении вероятностей Pn (m) того, что sn = m (где m - целое). Простейшим примером локальной П. т. может служить локальная теорема Лапласа (см. Лапласа теорема).

4) П. т. в их классической постановке описывают поведение отдельной суммы sn с возрастанием номера n. Достаточно общие П. т. для вероятностей событий, зависящих сразу от нескольких сумм, получены впервые Колмогоровым (1931). Так, например, из его результатов следует, что при весьма широких условиях вероятность неравенства

имеет пределом величину

(z > 0)

5) Перечисленные выше П, т. относятся к суммам случайных величин. Примером П. т. иного рода могут служить П. т. для членов вариационного ряда (См. Вариационный ряд). Эти П. т. подробно изучены советскими математиками Б. В. Гнеденко и Н. В. Смирновым.

6) Наконец, к П. т. относят также и теоремы, устанавливающие свойства последовательностей случайных величин, имеющие место с вероятностью, равной единице (см., например, Повторного логарифма закон).

Лит.: Гнеденко Б. В., Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М. - Л., 1949; Ибрагимов И. А., Линник Ю. В., Независимые и стационарно связанные величины, М., 1965; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы, 2 изд., М., 1973.

Ю. В. Прохоров.

теорема         
ж.
Положение, истинность которого нуждается в доказательстве и устанавливается путем доказательства (в математике).

Wikipedia

Теорема

Теоре́ма — (др.-греч. Θεώρημα, от др.-греч. Θεώρηώ — рассуждаю) математическое утверждение, истинность которого устанавливается путём доказательства. Доказательства теорем опираются на ранее доказанные теоремы и общепризнанные утверждения (аксиомы).

Прокл Диадох в «Комментарии к I книге Начал Евклида» писал, что Зенодот отличает теорему от задачи: «теорема исследует, каков отличительный признак соответствующей ей материи, а задача — каково некое сущее».

Теорема является логическим следствием аксиом. Доказательство математической теоремы является логическим аргументом для утверждения теоремы, приведенного в соответствии с правилами формальной системы. Доказательство теоремы часто интерпретируется как обоснование истинности утверждения теоремы. В свете требования, чтобы теоремы были доказаны, концепция теоремы является принципиально дедуктивной, в отличие от понятия научного закона, который является экспериментальным.

Многие математические теоремы являются условными утверждениями. В этом случае доказательство выводит заключение из условий, называемых гипотезами или предпосылками. В свете интерпретации доказательства как оправдания истины, заключение часто рассматривается как необходимое следствие гипотез, а именно, что заключение верно в случае, если гипотезы верны, без каких-либо дополнительных предположений. Тем не менее, условия могут интерпретироваться по-разному в некоторых дедуктивных системах, в зависимости от значений, присвоенных правилам вывода и символа условия.

Хотя теоремы могут быть написаны в полностью символической форме, например, с помощью исчисления высказываний, они часто выражаются на естественном языке (английском, русском, французском и др.). То же верно и для доказательств, которые часто выражаются в виде логически организованной и четко сформулированной цепи неформальных аргументов, предназначенных для того, чтобы убедить читателей в истинности формулировки теоремы, из каковой цепи в принципе можно построить формальное символическое доказательство. Такие аргументы, как правило, легче проверить, чем чисто символические, и, на самом деле, многие математики отдают предпочтение доказательству, которое не только демонстрирует справедливость теоремы, но и каким-то образом объясняет, почему она, очевидно, верна. В некоторых случаях одной картины достаточно для доказательства теоремы.

Поскольку теоремы лежат в основе математики, они также играют центральную роль в её эстетике. Теоремы часто описываются как «тривиальные», «сложные», «глубокие» или даже «красивые». Эти субъективные суждения варьируются не только от человека к человеку, но и со временем: например, когда доказательство упрощено или лучше понято, теорема, которая когда-то была трудной, может стать тривиальной. С другой стороны, глубокая теорема может быть сформулирована просто, но её доказательство может включать в себя удивительные и тонкие связи между различными областями математики. Особенно известным примером такой теоремы является Великая теорема Ферма.

Wat is ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ - definition